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A hula!hoop is sports equipment, which became
popular in the 1960s, and is a thin!walled hoop that
goes around the athlete’s waist. For spinning a hula!
hoop, the athlete’s waist makes periodic motions in
the horizontal plane resulting in stable rotations. In [1]
the periodic motion of the athlete’s waist along one
axis was considered, and the hula!hoop problem was
reduced to the problem of a pendulum with a vibrating
suspension point in the absence of gravity. The stable
mode of pendulum rotation with an average angular
velocity equal to the excitation frequency was found
approximately, and the conditions of stability of this
mode were obtained. In [2] the same mode of rotation
was found for this pendulum by the method of averag!
ing in the second approximation, and its stability con!
ditions were investigated. Stable hula!hoop rotation
for the periodic excitation along two axes was studied
by the method of direct separation of motion in [3]. 

In this study, we considered the hula!hoop excita!
tion along two axes corresponding to an elliptic trajec!
tory of the motion of the athlete’s waist. For identical
excitation amplitudes, exact solutions corresponding
to the hula!hoop rotation with a constant angular
velocity equal to the excitation frequency are
obtained. The stability of these solutions is investi!
gated. The conditions of the inseparable hula!hoop
rotation, both stable and unstable, are derived.

The case of close excitation amplitudes corre!
sponding to the motion of the athlete’s waist along an
ellipse close to a circle is considered. The solutions of
the problem on stable hula!hoop rotation in the first,
second, and third approximation are obtained by the
averaging method. The comparison with the numeri!
cal solution obtained with high accuracy shows that
the third approximation practically coincides with it.

The conditions of coexistence of stable rotation modes
with opposite directions are obtained. An interesting
case when the athlete’s waist rotates oppositely to the
rotation of the hula!hoop is investigated.

1. BASIC RELATIONS

We assume that the athlete’s waist represents a cir!
cle with the center at the point O', the motion of which
in time t is described by the ellipse x = asinωt, y =
bcosωt with the center at the origin of coordinates O,
semiaxes a, b, and the excitation frequency ω (Fig. 1).
Without restriction of generality, we consider that a ≥ |b|

and ω > 0. For these assumptions, the sign of b deter!
mines the direction of motion of the center of the waist
along an ellipse. The center of the waist moves clock!
wise if b > 0 and counter!clockwise if b < 0, and the
trajectory degenerates into a straight!line if b = 0.

The equations of the hula!hoop motion in the sys!
tem of coordinates connected to the athlete’s waist
taking into account viscous friction have the form

(1)

(2)

(3)

Icθ
·· kθ·+ FTR,–=

m R r–( )ϕ·· m x·· ϕsin y·· ϕcos+( ) FT,+=

m R r–( )ϕ· 2 N m x·· ϕcos y·· ϕsin–( ),+=
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Fig. 1. Motion of hula!hup.
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where θ is the hula!hoop rotation angle with respect to
the center of mass C, ϕ is the angle between the axis x
and the radius CO', Ic = mR2 is the moment of inertia
of the hula!hoop with respect to the center of mass, FT

is the force of friction, m is the hula!hoop mass, R is its
radius, k is the viscosity coefficient, r is the radius of
the athlete’s waist, and N is the normal force. Equa!
tion (1) describes the hula!hoop rotation around the
center of mass, and Eqs. (2) and (3) are the equations
of the hula!hoop motion in the projections to the lon!
gitudinal and transverse directions to the CO'.

Considering that there is no slip at the contact
point, we have the following kinematic constraint:

(4)

Excluding the force of friction FT from Eqs. (1) and (2)
and using Eq. (4), we obtain the equation with respect
to the angle ϕ as

(5)

From Eq. (3), we express the normal force N and write
the condition N > 0 as

(6)

which means that the hula!hoop does not separate
from the athlete’s waist during the motion.

We introduce new time τ = ωt and the dimension!
less parameters

(7)

Then Eqs. (5), (6) after trigonometric calculations
take the form

(8)

(9)

where the dot designates the derivative in time τ. These
equations include three dimensionless parameters: the
damping factor γ, and the dimensionless excitation
parameters µ and ε. The relation between the parame!
ters µ and ε determines the size and shape of the
ellipse—the trajectory of the motion of the athlete’s
waist. From Eq. (7), it can be seen that it is the
straight!line for µ = ε and the circle for ε = 0 or µ = 0,
the center of the waist moving clockwise for µ > ε and
counter!clockwise for µ < ε. From the assumption a ≥
|b| and Eqs. (7), it follows that the parameters µ and ε
are nonnegative.

R r–( )ϕ· Rθ
· .=

ϕ·· k

2mR2
!!!!!!!!!!!ϕ· ω

2 a ωtsin ϕsin b ωt ϕcoscos+( )

2 R r–( )
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!+ +  = 0.

m R r–( )ϕ· 2 mω
2 a ωtsin ϕ b ωt ϕsincos–cos( )+ 0,>

γ
k

2mR2
ω

!!!!!!!!!!!!!!!, µ
a b+

4 R r–( )
!!!!!!!!!!!!!!!!, ε

a b–
4 R r–( )
!!!!!!!!!!!!!!!!.= = =

ϕ·· γϕ· µ ϕ τ–( )cos+ + ε ϕ τ+( ),cos=

ϕ· 2 2µ ϕ τ–( )sin– 2ε ϕ τ+( )sin 0,>+

2. EXACT SOLUTION 
OF THE UNPERTURBED EQUATION

We find the mode of hula!hoop rotation for the cir!
cular excitation ε = 0 (a = b) for an arbitrary damping
factor γ. In this case, we call Eq. (8) the unperturbed
equation

(10)

which has the exact rotation solution

(11)

The initial rotation phase is determined by the relation

(12)

where we assume that µ > 0. Equality (12) imposes the
restriction on the parameters of amplitude and damp!
ing in the form

(13)

When fulfilling inequality (13), we find

(14)

Solutions (11), (14), correspond to hula!hoop rota!
tion with the constant angular velocity equal to the
excitation frequency ω.

We investigate the stability of these solutions. For
this purpose, we present the angle ϕ as ϕ = τ + ψ +
η(τ), where η(τ) is a small addition, and substitute it in
Eq. (10). Then linearizing in η(τ) and using Eq. (12),
we obtain the linear equation

(15)

According to the Lyapunov stability theorem, solu!
tion (11), (14) is asymptotically stable according to
the linear approximation if all eigenvalues of linear!
ized Eq. (15) have negative real parts. It follows from
the Routh–Hurwitz conditions that they are fulfilled
for

(16)

because it is assumed that µ > 0.

From conditions (16) and Eq. (14), for γ > 0, it fol!
lows that the solution

(17)

ϕ·· γϕ· µ ϕ τ–( )cos+ + 0,=

ϕ τ ψ.+=

ψcos γ

µ
!!,–=

γ µ.≤

ψ
γ

µ
!!–

 

 arccos± 2πk, k+ 0 1 …, ,= =

η·· γη· µ ψηsin–+ 0.=

γ 0, ψsin 0,<>

ϕ τ ψ, ψ+ γ

µ
!!–

 

 arccos– 2πk,+= =

k 0 1 …,, ,=
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is asymptotically stable, and the solution

(18)

is unstable. For negative damping, γ < 0, both these
solutions are unstable.

We check now for exact solutions (11), (14) of rota!
tion condition (9) without separation, which acquires
the following form taking into account Eq. (11):

(19)

Due to Eq. (16) and the assumption µ > 0, inseparabil!
ity condition (19) is obviously fulfilled for stable solu!
tion (17). For unstable solution (18), sinψ > 0. In this

case, we substitute the expression sinψ =  fol!

lowing from Eq. (12) into Eq. (19) and obtain the con!
dition of inseparable unstable rotation in the form µ2 <

 + γ2. From here taking into account condition (13)

and the assumption µ > 0 for solution (18), we obtain
the existence condition

(20)

restricting the excitation amplitude from below and
from above.

Thus, solution (17) fulfilling condition

(21)

corresponds to asymptotically stable inseparable hula!
hoop rotation with a constant angular velocity ω,
while solution (18) corresponds to unstable insepara!
ble hula!hoop rotation with a constant angular veloc!
ity ω if inequality (20) is fulfilled.

We note that the phase ψ of stable solution (17)
tends to –π/2 at γ → +0, while the phase of unstable
solution (18) tends to π/2.

3. ASYMPTOTIC SOLUTIONS

For unequal but close amplitudes a ≠ b in Eqs. (8),
(9), we take ε as a small parameter. Passing to slow
variables

(22)

we change Eq. (8) to the form conventional for using
the averaging method [2]:

(23)

ϕ τ ψ, ψ+ γ

µ
!!–

 

 arccos 2πk,+= =

k 0 1 …,, ,=

1 2µ ψsin– 0.>

1 γ
2

µ
2

!!!!–

1
4
!!

γ µ
1
4
!! γ

2+ ,<≤

0 γ µ≤<

x1 ϕ τ, x2– ϕ· ,= =

x· 1 x2 1–[ ],=

x· 2 γx2 µ x1( )cos+[ ]– ε x1 2τ+( )cos ,+=

where the expressions in square brackets are small due
to Eq. (12) and x2 ≈ 1. We consider these expressions as
small values of the same order of magnitude as that of
ε. In the first, second, and third approximations, we
obtain the same averaged equation by the averaging
method:

(24)

where ξ1 and ξ2 are the averaged variables x1 and x2.
Excluding ξ2, we transform Eqs. (24) to the second!
order equation

(25)

The steady!state solutions of this equation are found
from the equality

(26)

From here, we express the averaged variable

(27)

Knowing the averaged variables, we find the solu!
tions for slow variables x1 and x2. In the first approxi!
mation, we have

(28)

The solution in the second approximation has the fol!
lowing form:

(29)

The solution of Eqs. (23) in the third approximation is

(30)

ξ
·

1 ξ2 1,–=

ξ
·

2 γξ2– µ ξ1,cos–=

ξ
··

1 γ 1 ξ
·

1+( ) µ ξ1cos+ + 0.=

ξ1cos γ

µ
!!.–=

ξ1
γ

µ
!!–

 

 arccos± 2πk, k+ 0 1 …., ,= =

x1 ξ1,=

x2 1 ε

2
!! 2τ ξ1+( ).sin+=

x1 ξ1
ε

4
!! 2τ ξ1+( ),cos–=

x2 1 ε

2
!! 2τ ξ1+( )sin εγ

4
!!!! 2τ ξ1+( ).cos+ +=

x1 ξ1
ε

4
!! 2τ ξ1+( )cos– εγ

8
!!!! 2τ ξ1+( ),sin+=

x2 = 1 ε

2
!! 1 εγ

2

4
!!!!!!–

 

  2τ ξ1+( )sin+

+ εµ

8
!!!!! 2τ 2ξ1+( )cos

+ 3εγ
8

!!!!!!! 2τ ξ1+( )cos ε
2

32
!!!! 4τ 2ξ1+( ).cos–
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Passing with the help of Eq. (22) to the variable ϕ, we
obtain the solution of Eq. (8) from Eqs. (28), (29), and
(30) in the first approximation as

(31)

in the second approximation as

, (32)

and in the third approximation as

(33)

where ξ1 is determined from Eq. (27).
The existence and stability conditions of these

solutions coincide with the conditions for exact
solution (13) and (16) if we assume µ > 0. Thus,
solutions (31), (32), and (33), where

(34)

are asymptotically stable, and solutions (31), (32), and
(33), where

(35)

are unstable. From here, it can be seen that solutions
(31), (34) and (31), (35) in the first approximation do
not differ from solutions (17) and (18) in the zero

ϕ τ ξ1,+=

ϕ τ ξ1
ε

4
!! 2τ ξ1+( )cos–+=

ϕ τ ξ1
ε

4
!! 2τ ξ1+( )cos– εγ

8
!!!! 2τ ξ1+( ),sin+ +=

ξ1
γ

µ
!!–

 

 arccos– 2πk, k+ 0 1 …,, ,= =

ξ1
γ

µ
!!–

 

 arccos 2πk, k+ 0 1 …,, ,= =

approximation, while the small oscillations are added
to (32), (34), and (35) in the second approximation
and solutions (33), (34), and (35) in the third approx!
imation.

We check the inseparability condition for first!
approximation solutions (28). Substituting the angle ϕ
and the angular velocity  obtained from Eqs. (22)
and (28) into inequality (9), we obtain the inseparabil!
ity condition of rotation in the form

(36)

This condition is obviously fulfilled for the stable solu!
tion (28), (34), at ε < 1/3 due to sinξ1 < 0 from Eq. (16)
and the assumption µ > 0. For unstable solution (28),
(35), it is easy to show that inseparability condition (36)

is valid only if the inequality 1 > 2  + 3ε limit!
ing the excitation amplitude from above is fulfilled.
From here taking into account condition (13), the
assumptions µ > 0, and ε < 1/3 for solution (28), (35),
we obtain the existence condition

(37)

restricting the excitation amplitude from below and
from above. Condition (37) generalizes condition (20)
for the first approximation.

Thus, we obtain the solutions of Eqs. (23) in three
approximations (28), (29), and (30) by the averaging
method. It should be noted that all solutions are

ϕ·

1 2µ ξ1sin– 3ε 2τ ξ1+( )sin 0.>+

µ
2

γ
2–

γ µ
1 3ε–

2
!!!!!!!!!!!!
 

 
2

γ
2+ ,<≤

0.8

2π0
τ

1.0

1.2

x2
1
2
3

Fig. 2. Comparison of angular velocities x2 in three successive approximations (28), (29), and (30) with the numerical solution of
Eq. (23) for the parameters ε = 0.6, µ = 0.8, and γ = 0.5. Here and in Fig. 3, 1 is the first approximation, 2 is the second approx!
imation, and 3 is the third approximation. Points represent the numerical solutions.
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obtained without the assumption of smallness dump!
ing and of excitation amplitudes contrary to those in
[1–3]. The graphs of angular velocities x2 in three dif!
ferent approximations are shown in Fig. 2 for the
parameters ε = 0.6, µ = 0.8, and γ = 0.5. These graphs
are compared with the numerical solution of Eqs. (24)
with the initial conditions x1(0) = –2.2093 and x2(0) =
0.6991. From Fig. 2, it can be seen that the third
approximation is closer to the numerical solution than
the first and second approximations.

4. REVERSE ROTATION

It is natural to assume that there are also reverse
hula!hoop rotations, i.e., counter!clockwise ones. If
we take µ instead of ε as a parameter in Eq. (8), the sta!
ble solution of the unperturbed equation proves to be

ϕ = –τ +  + 2πk, which corresponds to a

rotation reverse with respect to that described by
Eq. (11). After performing calculations similar to
those in Section 2, we obtain the existence conditions
of stable reverse rotations for small parameter µ

(38)

It should be noted that these conditions can be ful!
filled simultaneously with the conditions for forward
rotations (21) if the following inequalities are fulfilled:

(39)

γ

ε
!!–

 

 arccos

0 γ ε.≤<

0 γ min µ ε,{ }.≤<

Condition (39) is obtained under the assumption that
both ε and µ are small. Inseparability condition (9) is
always fulfilled for ε ! 1 and µ ! 1.

Thus, we obtain coexistence conditions (39) for the
stable forward and reverse inseparable rotations when
the athlete rotating his waist in one direction along a
fixed elliptic trajectory can rotate the hula!hoop in an
arbitrary direction depending on the initial conditions.

Substituting expressions from Eqs. (7) into
Eq. (39), we obtain the coexistence conditions for the
stable forward and reverse rotations in the initial phys!
ical parameters:

(40)

From here it can be seen that, for fulfilling these con!
ditions, it is necessary that the ellipse along which the
center of the athlete’s waist moves should not degener!
ate in the circle.

The coexistence of forward and reverse rotations
means that there are stable inseparable solutions,
when the athlete’s waist rotates oppositely to the hula!
hoop rotation. Such a solution is shown in Fig. 3,
where the graphs of angular velocities x2 of reverse
rotations in three successive approximations are repre!
sented for the same parameters as in Fig. 2. The
approximate solutions for reverse rotations are
obtained the same way as in Section 3 with the only
difference being that the expression for slow variable x1

0 2k R r–

R2
ωm

!!!!!!!!!!!! a b .–≤<

–1.4

2π0
τ

–1.0

–0.6
x2

Fig. 3. Reverse rotation. Comparison of the angular velocities x2 in three successive approximations (41), (42), and (43) with the
numerical solution of Eq. (23) at parameters ε = 0.6, µ = 0.8, and γ = 0.5.
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in Eq. (22) is replaced by x1 = ϕ + τ. As a result, we
obtain the expressions for the angular velocities in
three approximations similar to Eqs. (28), (29), and
(30):

(41)

(42)

(43)

where ξ1 =  + 2πk for stable rotations.

These graphs are compared with the numerical
solution of Eqs. (23) with the initial condit!
ions x1(0) = 2.4984 and x2(0) = –0.7125. From Fig. 3,
it can be seen that the third approximation is very close
to the numerical solution in spite of the fact that the
small parameter µ = 0.8.
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x2 1– µ

2
!! 2τ ξ1–( ),sin–=

x2 1– µ

2
!! 2τ ξ1–( )sin– µγ

4
!!!!! 2τ ξ1–( ),cos–=

x2 1– µ

2
!! 1 µγ

2

4
!!!!!!–

 

  2τ ξ1–( )sin–=

– εµ

8
!!!!! 2τ 2ξ1–( )cos 3µγ

8
!!!!!!! 2τ ξ1–( )cos–

+ µ
2

32
!!!! 4τ 2ξ1–( ),cos

γ

ε
!!–
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